& Goal of Learning Algorithms

@ The early learning algorithms were designed to find
such an accurate fit to the data.

@ A classifier is said to be consistent if it performed the
correct classification of the training data

€ The ability of a classifier to correctly classify data not
In the training set s known as Its generalization

€ Bible code? 1994 Taipei Mayor election?

€ Predict the real future NOT fitting the data in your
hand or predict the desired results



Probably Approximately Correct Learning
pac Model

€ Key assumption:

Training and testing data are generated I.1.d.
according to an fixed but unknown distribution D

€ When we evaluate the “guality” of a hypothesis
(classification function) h € H we should take the

unknown distribution D into account ( i.e. “average
error” or “expected error” made by the h € H)

® We call such measure risk functional and denote
it as erﬂg(h) =D{(z,y) € X x {1,—1}| h(x)#y}



iGeneralization Error of pac Model

® Let S={(z%v1),...,(2',y;)} be a set of [ training
examples chosen i.i.d. according to D

€ Treat the generalization error 6"“3"5(%) asar.v.
depending on the random selection of S

€ Find a bound of the trail of the distribution of I'.V.
er£(h5) in the form ¢ = ¢(l, H,9)

® < =¢(I,H, ) is a function of [, H and o,where 1 — 0

IS the confidence level of the error bound which Is
given by learner



& Probably Approximately Correct

& We assert:
Pr({ 67“275(h5) >ec=¢(l,H,0)}) <9

or
Pr({erp(hs) <e=e(l, H,0)})=1 -6

@ The error made by the hypothesis hg will be less

then the error bound (I, H,J) that is not depend
on the unknown distribution D



Find the Hypothesis with Minimum
Expected Risk?

¢ LletS= {(xlayl)a R (xlayl)} C X X {_ 17 1} be
the training examples chosen i.i.d. according to D
with the probability density P(z,y)

€ The expected misclassification error made by h ¢ H
IS 1
h| = I slh(x) — yldp(z,
R[h] XX{_M}Q\ () — yldp(z, y)

@ The ideal hypothesis &}, should has the smallest
expected risk R|h* |<R|h|, Vhe H

opt
Unrealistic 1!



Empirical Risk Minimization (ERM)
& (D and P(z,y) are not needed)

€ Replace the expected risk over p(z,y) by an
average over the training example

l .
® The empirical risk: R.,,[h] = %;%!h(x@) —

@ Find the hypothesis h.,,, with the smallest empirical
risk — Remplhlpp| < Bemplh], Vh € H

€ Only focusing on empirical risk will cause overfitting



VC Confidence
i (The Bound between R.,,|h] & R[h] )

€ The following inequality will be held with probability
1—09

R[h] <Remp[h] -+ \/U(ZOQ(Ql/v)il)—log(é/Zl)

C. J. C. Burges, A tutorial on support vector machines for
pattern recognition,
Data Mining and Knowledge Discovery 2 (2) (1998), p.121-167



Why We Maximize the Margin?
&(Based on Statistical Learning Theory)

@ The Structural Risk Minimization (SRM):
» The expected risk will be less than or equal to

empirical risk (training error)+ VC (error) bound

¢ Hw”2 x VC' bound

¢ min VC bound < mm%HwH; < max Margin



Capacity (Complexity) of Hypothesis
Space H :VC-dimension

® A given training set S is shattered by H if and only
if for every labeling of S, 34 h € H consistent

with this labeling

€ Three (linear independent) points shattered by a
hyperplanes in R?

N L



Shattering Points with Hyperplanes

i n R"

Can you always shatter three points with a line in R*?

Theorem: Consider some set of m points in ", Choose
a point as origin. Then the m points can be shattered

by oriented hyperplanes if and only if the position
vectors of the rest points are linearly independent.




Definition of VC-dimension
(A Capacity Measure of Hypothesis Space H )

€ The Vapnik-Chervonenkis dimension, VC(H) , of
hypothesis space H defined over the input space
X Is the size of the (existent) largest finite subset

of X shattered by H
¢ If arbitrary large finite set of X can be shattered
by H, then VC(H) = o

® Let H = {all hyperplanes in R"} then
VC(H) =n+1



