
Goal of Learning Algorithms

The early learning algorithms were designed to find 
such an accurate fit to the data.

A classifier is said to be consistent if it performed the
correct classification of the training data

The ability of a classifier to correctly classify data not
in the training set is known as its generalization
Bible code? 1994 Taipei Mayor election?

Predict the real future NOT fitting the data in your 
hand or predict the desired results



Probably Approximately Correct Learning
pac Model

Key assumption:
Training and testing data are generated i.i.d.
according to an fixed but unknown distributionD

We call such measure risk functional and denote

When we evaluate the “quality” of a hypothesis
(classification function) h ∈ H

D

we should take the
unknown distribution
error” or “expected error” made by the h ∈ H

( i.e. “average

)

it as Derr(h) =
D

{(x, y) ∈ Xâ {1,à 1}| h(x)6=y}

into account



Generalization Error of pac Model

Let be a set ofS = {(x1, y1), . . ., (x
l, yl)} l training

Dexamples chosen i.i.d. according to
Treat the generalization error err(hS)

D
as a r.v.

depending on the random selection of S

Find a bound of the trail of the distribution of
in the form

r.v.
err(hS)
D

ε = ε(l,H, î)

ε = ε(l,H, î) is a function of l,H and î,where 1à î

is the confidence level of the error bound which is
given by learner



Probably Approximately Correct 

We assert:

Pr({ err(hS)
D

> ε = ε(l, H, î)}) < î

The error made by the hypothesis
then the error bound

hs will be less
ε(l,H, î) that is not depend

on the unknown distribution D

Pr({ err(hS)
D

6ε = ε(l, H, î)})>1à î

or



Find the Hypothesis with Minimum
Expected Risk?

Let S = {(x1, y1), . . ., (x
l, yl)} ò Xâ {à 1, 1}

the training Dexamples chosen i.i.d. according to
with the probability density p(x, y)

be

The expected misclassification error made by h ∈ H
is 

R[h] =
⎧⎭

Xâ{à1,1}2
1|h(x)à y|dp(x, y)

The ideal hypothesis hã
opt should has the smallest

expected risk R[hã
opt]6R[h], ∀h ∈ H

Unrealistic !!!



Empirical Risk Minimization (ERM)

Find the hypothesis hã
emp with the smallest empirical

risk Remp[hã
emp]6Remp[h], ∀h ∈ H

D p(x, y)and are not needed)(

Replace the expected risk over by an  p(x, y)
average over the training example

Remp[h] = l
1
P
i=1

l

2
1 |h(xi)à yi|The empirical risk:

Only focusing on empirical risk will cause overfitting



VC Confidence
Remp[h] & R[h](The Bound between                             )

R[h]6Remp[h] + l
v(log(2l/v)+1)àlog(î/4)

q
The following inequality will be held with probability
1à î

C. J. C. Burges, A tutorial on support vector machines for 
pattern recognition,

Data Mining and Knowledge Discovery 2 (2) (1998), p.121-167



Why We Maximize the Margin?
(Based on Statistical Learning Theory)

The Structural Risk Minimization (SRM):

The expected risk will be less than or equal to

empirical risk (training error)+ VC (error) boundííwíí
2
∝ VC bound

min VC bound⇔ min 2
1
ííwíí2

2
⇔ maxMargin



Capacity (Complexity) of Hypothesis 
Space    :VC-dimensionH

A given training set is shattered by
if for every labeling of
with this labeling

S H if and only
S, ∃ h ∈ H consistent

Three (linear independent) points shattered by a
hyperplanes in R2



Shattering Points with Hyperplanes
in   Rn

Theorem: Consider some set of m points inRn. Choose
a point as origin. Then the m points can be shattered

by oriented hyperplanes if and only if the position
vectors of the rest points are linearly independent.

Can you always shatter three points with a line inR2?



Definition of VC-dimension
H(A Capacity Measure of Hypothesis Space    )

The Vapnik-Chervonenkis dimension,VC(H) , of
hypothesis space H defined over the input space
X is the size of the (existent) largest finite subset

X shattered by H

If arbitrary large finite set of X can be shattered
byH, then VC(H) ñ∞

of

Let H = {all hyperplanes in Rn} then
VC(H) = n+ 1


