

Goal of Learning Algorithms

- The early learning algorithms were designed to find such an accurate fit to the data.
- A classifier is said to be consistent if it performed the correct classification of the training data
- The ability of a classifier to correctly classify data not in the training set is known as its generalization
- Bible code? 1994 Taipei Mayor election?
- Predict the real future NOT fitting the data in your hand or predict the desired results

Probably Approximately Correct Learning pac Model

- Key assumption:
 - Training and testing data are generated i.i.d. according to an *fixed but unknown* distribution \mathcal{D}
- ♦ When we evaluate the "quality" of a hypothesis (classification function) $h \in H$ we should take the *unknown* distribution $\mathfrak D$ into account (*i.e.* "average error" or "expected error" made by the $h \in H$)
- We call such measure risk functional and denote it as $err(h) = \mathcal{D}\{(x,y) \in X \times \{1,-1\} | h(x) \neq y\}$

Generalization Error of pac Model

- Let $S = \{(x^1, y_1), ..., (x^l, y_l)\}$ be a set of l training examples chosen i.i.d. according to \mathfrak{D}
- igoplus Treat the generalization error $er_{\mathcal{D}}^{r}(h_{S})$ as a r.v. depending on the random selection of S
- Find a bound of the trail of the distribution of r.v. $err(h_S)$ in the form $\varepsilon = \varepsilon(l, H, \delta)$
- $\varepsilon = \varepsilon(l, H, \delta)$ is a function of l, H and δ , where 1δ is the confidence level of the error bound which is given by learner

Probably Approximately Correct

We assert:

$$Pr(\{er_{\mathcal{D}}^{r}(h_S)>arepsilon=arepsilon(l,H,\delta)\})<\delta$$
 or

$$Pr(\lbrace err(h_S) \leqslant \varepsilon = \varepsilon(l, H, \delta) \rbrace) \geqslant 1 - \delta$$

lackloais The error made by the hypothesis h_s will be less then the error bound $\varepsilon(l,H,\delta)$ that is not depend on the unknown distribution ${\mathfrak D}$

Find the Hypothesis with Minimum Expected Risk?

- Let $S = \{(x^1, y_1), \ldots, (x^l, y_l)\} \subseteq X \times \{-1, 1\}$ be the training examples chosen i.i.d. according to $\mathfrak D$ with the probability density p(x,y)
- ◆ The expected misclassification error made by $h \in H$ is $R[h] = \int_{X \times \{-1,1\}} \frac{1}{2} |h(x) y| dp(x,y)$
- lackloaph The ideal hypothesis h_{opt}^* should has the smallest expected risk $R[h_{opt}^*] \leqslant R[h], \quad \forall h \in H$

Unrealistic !!!

Empirical Risk Minimization (ERM)

(\mathfrak{D} and p(x,y) are not needed)

- lacktriangle Replace the expected risk over p(x,y) by an average over the training example
- lacktriangle The empirical risk: $R_{emp}[h] = \frac{1}{l} \sum_{i=1}^{l} \frac{1}{2} |h(x^i) y_i|$
- lacktriangledown Find the hypothesis h_{emp}^* with the smallest empirical risk $R_{emp}[h_{emp}^*] \leqslant R_{emp}[h], \quad \forall h \in H$
- Only focusing on empirical risk will cause overfitting

VC Confidence

(The Bound between $R_{emp}[h] \ \& \ R[h]$)

• The following inequality will be held with probability $1-\delta$

$$R[h] \leqslant R_{emp}[h] + \sqrt{\frac{v(log(2l/v)+1) - log(\delta/4)}{l}}$$

C. J. C. Burges, A tutorial on support vector machines for pattern recognition,

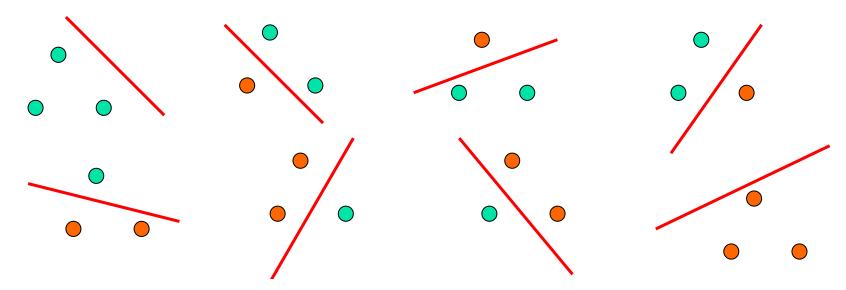
Data Mining and Knowledge Discovery 2 (2) (1998), p.121-167

Why We Maximize the Margin? (Based on Statistical Learning Theory)

- The Structural Risk Minimization (SRM):
 - ➤ The expected risk will be less than or equal to empirical risk (training error) + VC (error) bound
- \bullet $\|w\|_2 \propto VC bound$
- $\bullet \min VC \ bound \Leftrightarrow \min \frac{1}{2} ||w||_2^2 \Leftrightarrow \max Margin$

Capacity (Complexity) of Hypothesis Space *H* : VC-dimension

- lack A given training set S is *shattered* by H if and only if for every labeling of $S,\ \exists\ h\in H$ consistent with this labeling
- lacklosh Three (linear independent) points shattered by a hyperplanes in \mathbb{R}^2



Shattering Points with Hyperplanes in \mathbb{R}^n

Can you always shatter three points with a line in \mathbb{R}^2 ?

Theorem: Consider some set of m points in \mathbb{R}^n . Choose a point as origin. Then the m points can be shattered by oriented hyperplanes if and only if the position vectors of the rest points are linearly independent.

Definition of VC-dimension

(A Capacity Measure of Hypothesis Space H)

- lacklosh The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over the input space X is the size of the (existent) largest finite subset of X shattered by H
- igoplus If arbitrary large finite set of <math>X can be shattered by H, then $VC(H) \equiv \infty$
- Let $H = \{all \ hyperplanes \ in \ R^n\}$ then VC(H) = n+1